
1

ZIMPOL Camera Communication and Control
31. 5. 2024

This document describes all the details of the ZIMPOL camera communication and control
required for the software development of the ENANTIOS Brachium instrument.

The cameras for the Brachium instrument are based on new electronics developed at SUPSI in
the last two years. However, the software in the camera is an adapted old version originally
developed at ETH about 20 years ago. A new version is currently under development at SUPSI
mainly for the ZIMPOL cameras used at IRSOL but it is likely that ENANTIOS will use the new
software in future too. The software will still use the ZIMPOL communication protocol described
in this document but with some optimizations of the protocol and some control functions will be
different. Therefore, some hints are given to make the Brachium software already be prepared for
likely changes in future camera software versions.

Camera communication
The standard TCP/IP transport protocol is used but the application protocol is nonstandard (the
ZIMPOL protocol). The camera acts as a server. For both up and down stream data only a single
client socket is required for the application. The server port is usually 15000 but can be changed
(in a configuration file of the camera).

Description of the ZIMPOL protocol
The ZIMPOL protocol was originally defined at ETH for the communication of the various
hardware and software components of the ZIMPOL instrument (not only the camera). A free and
easy human readable ASCII format is used for most interaction except for a special binary format
to transfer large data sets like the images of a camera.

In the following section a rather abstract description of the syntax is given. It was taken from the
original definition but reduced to the subset of the entire syntax sufficient for hardware
components. More practical explanations and examples are given in the section afterwards.

Generic syntax

The exact syntax of the messages is defined below by production rules. Starting from the non-
terminal start symbol $message, a set of repeatedly applicable replacement rules allows all

syntactically correct messages to be generated. Non-terminal symbols start with a $ sign and are
printed in italics. For each of these symbols, a vertical list of alternatives is given. These can
contain terminal symbols (printed in bold), further non-terminal symbols, or a regular expression
(printed in italics). Graphically invisible terminal symbols such as line feed and control characters
are represented in the notation <ASCIIname>.

2

$message

 $mbody $eol

 <EOT>

The <EOT> byte is foreseen to indicate to terminate the TCP/IP communication.

$mbody

 $status

 $cmdgroup

$eol
 <LF>
 <CR>
 <CR><LF>

The camera accepts all three alternatives of end of line bytes. For the client the recommendation
is to use a line feed only. The camera server currently sends <CR><LF> but this may change in

the future and therefore for the client it is recommended to implement the acceptance of all
alternatives.

$status
 $cmdIdentifier:$umbody
 $cmdIdentifier;

$cmdgroup
 $cmd
 $cmd $cmdgroup

It is recommended to send groups of commands separated with end of line bytes instead of a
white space.

$cmd
 $cmdIdentifier
 $assignment
 $inquiry

$assignment
 $reference=$constant

$inquiry
 $reference?

$reference
 $parIdentifier
 $parIdentifier[$subscripts]

$subscripts
 $subscript
 $subscript,$subscript

$subscript
 [0-9]*

$cmdIdentifier
$parIdentifier
 [a-zA-Z][a-zA-Z0-9_]*

3

$umbody
 $umword
 $umbody $umword

$umword
 $word
 {$word}

$word
 [!"#$%'()*+,-./0-9:;<=>?@A''-Z[\]^_`a-z|~]+

$constant
 $integer
 $real
 $string
 $binarydata

$integer
 $sdecimal
 $binary
 $octal
 $hex

$sdecimal
 $udecimal
 -$udecimal
 +$udecimal

$udecimal
 0
 [1-9][0-9]*

$binary
 0b[0-1]+

$octal
 0o[0-7]+

$hex
 0x[0-9a-fA-F]+

The camera should send integer values as decimal constants only. Therefore, the implementation
of the other formats (binary, octal and hexadecimal) is most likely not required.

$real
 $sdecimal.$udecimal$exponent
 $sdecimal.$udecimal
 $sdecimal.

$exponent
 e$sdecimal
 E$sdecimal

$string
 ["][!#$%'()*+,-./0-9:;<=>?@A''-Z[\]^_`a-z{|}~]*["]
 ["][\040\041\043-\176]["]
 {$umbody}

A (simple) character string delimited with " may contain all printable ASCII characters including

the single space, but no ". The alternative variant, the block string delimited with {} can contain

all printable ASCII characters and control characters such as line feeds etc. ($umbody). Character

strings can be empty.

4

The camera sends string values delimited with {} although they are all simple strings. This will

most likely be changed in the new software version. Therefore, the client software should be able
to handle both variants of string delimiter.

$binarydata
 <SOH>$binDescriptor<STX>$bytes<ETX>

$binDescriptor
 $btype$bsize
 $btype$bsize $binAttributes

$btype
 s8
 s16
 s32
 s64
 u8
 u16
 u32
 u64
 f32
 f64

The small letter stands for signed (s), unsigned (u) and floating-point values (f). The number is
the bit size.

$bsize
 [$numelements]
 [$numrows,$numcolumns]
 [$numframes,$numrows,$numcolumns]

$binAttributes
 $binAttributes $binAttribute
 $binAttribute

$binAttribute
 $attrIdentifier=$constant

$bytes
 $bytes $byte
 $byte

The camera used the binary format to send images. A more detailed explanation is given in the
section camera operation.

5

Explanatory notes and examples

Parameter and commands

The camera is mainly controlled by sending scalar parameters and commands. Parameters are
transmitted with an assignment ($parIdentifier=$constant), e.g.:

it=1.5001
isl=20
seq_phase[1]=145

The last example is an array parameter where the element with the index number 1 is sent.

For a command the name of the command ($cmdIdentifier) is transmitted, e.g.:

gi
gis
abort

Commands but also many parameters immediately trigger a function in the camera. If the function
could be executed successfully the camera responds with a status message. For parameters with
$parIdentifier=$constant where $constant is the actual value that could possibly be slightly

different from the transmitted value. E.g.

it=1.5

For commands the response is $cmdIdentifier; e.g.

gis;

The ZIMPOL protocol also has the alternative variant $cmdIdentifier:Done that is currently

not used by the camera but may be implemented in the client program too.

In case the function cannot be executed or fails during execution for parameter and commands
the response is $Identifier:$umbody as soon as it fails. Where $umbody contains an error

message in the general form:

ERROR: some optional description of the failure

E.g. setting a negative exposure time is not possible and after sending it=-0.1 the camera

response is:

it: ERROR: set error in "it=-0.1"

The keyword ERROR: (including the : character) at the beginning of the message indicates the
error. It is not a clean implementation of the protocol because the correct keyword would be
Error:. A non-case-sensitive check of the message keywords may be a good solution for possible
future changes. The example does also include a space after it: that is not mandatory. The

protocol does allow to include space characters between tokes although it is not recommended
to do.

6

Parameter inquiry

Parameter inquiries are done by sending the name of the parameter with a ? at the end. Array
parameters can only be inquired element by element. Examples:

it?
isl?
Name?
seq_phase[0]?
seq_phase[1]?

If successful, the response comes again in the assignment format:

it=1.20
isl=10
Name={cam1}
seq_phase[0]=37
seq_phase[1]=560

or an error status message is sent in case something went wrong.

Asynchronous interactions

Interactions can run in an asynchronous way if the camera supports this. E.g. several parameter
inquiries or assignments can be sent at once before waiting for the first response.

Further the camera can send status messages and parameters at any time. Especially when a
function in the camera is running that takes a longer time like image acquisitions where various
informative status messages and image data is sent.

7

Camera operation

Parameters and commands

The following table lists relevant parameters and commands of the camera that are used for
normal camera operation. At the camera startup the parameters are set to the most useful value
for operation. Some of them may never be changed during operation e.g. the image size.

The first column is the name (identifier). The second column describes the data type with a capital
letter for integers (I), real (R), and string (S) values. The letter C is used for commands. In the
case of array parameters, the dimensions are given in square bracket [d] behind the type. The
ZIMPOL binary data format description is used if the parameter transmits the value in this format.
If the parameter has a special mode it is indicated in round brackets (mode). The (ro) indicates a
read only parameter. The (so) is used for parameters sent from the camera only, that cannot be
written and inquired by the client.

Name Type[d] (mode) Unit Description

Image acquisition, measurements

it R seconds Integration time (acquisition time)

isl I > 0 Image sequence length (number of images)

ifn I (ro) Input frame number

seq_mode I Image sequence mode

seq_state I (so) [0-3] Image sequence state (send in img data header)

seq_phase I[4] Image sequence phase

img u16[r,c] (so) Image data (binary data format)

gi C Get image (single image acquisition)

gis C Get image sequence (starts a measurement)

abort C Aborts image acquisition

Image size parameters

img_h I Image height (number of rows)

img_w I Image width (number of columns)

img_t I Image top

img_l I Image left

Temperature control

tr R °C Temperature requested (set point)

tc R (ro) °C Temperature cold side, image sensor temperature

tw R (ro) °C Temperature warm side (Peltier elements secondary
cooling)

pp R (ro) [0.0 - 1.0] Peltier power

tr_limited R (ro) °C Send while temperature changes

pphl R [0.0 - 1.0] Peltier power high limit

twhl R °C Temperature warm side high limit

8

tc_mode I [0-4] Temperature control mode
0: off
1: read temperature
2: control temperature
3: set Peltier power manually
4: control stopped

humidity R (ro) % Humidity electronic side

temp_humid R (ro) °C Temperature electronic side

temp_dew R (ro) °C Dew point

vacuum R (ro) bar Pressure vacuum side

temp_vacuum R (ro) °C Temperature vacuum side

Special camera parameters and commands

date S Date and time in the string format.
YYYY-MM-DDThh:mm:ss

Name S Camera name

CCDName S Name (type) of CCD sensor

CCDSerieNr S Serial number of CCD sensor

halt C Camera shutdown

reboot C Camera reboot

Temperature control of the ZIMPOL sensor

A thermometric cooling (Peltier elements) is used for the ZIMPOL image sensor and in addition a
secondary cooler is needed to cool the Peltier elements.

At startup of the camera the cooling is off and no temperature information is actively sent by the
camera. The two main parameters to control the temperature are tr for the set point and tc_mode

to switch on and off the temperature control loop in the camera.

The parameter tc_mode accepts the integer values 0 to 4. The default value is 0 (off). Setting to

1 causes the camera to send the parameters tc, tw and pp, every second, e.g.:

tc=25.13
tw=19.49
pp=0.00

The most important information for the user is tc the current temperature of the image sensor.

The values of tw and pp are normally not needed. The camera also sends these parameters every

second with the tc_mode values of 1 to 4. For normal operation tr is set to the target temperature

and tc_mode to 2, e.g.

tr=-15
tc_mode=2

As long as the temperature has not yet reached the set point the parameter it_limited is

send in addition, a typical output looks like:

tc=25.02
tw=20.32
pp=0.07
tr_limited=24.56

9

If the set point (tr) is changed at any time later, it immediately starts to change to the new target

temperature.

In case the secondary cooler fails the thermometric cooling would get out of control and put
maximum power to the Peltier element. This could destroy the Peltier elements and in the worst
case even the image sensor. Therefore, the camera automatically executes a safety control. The
parameter tw is compared with the temperature warm side high limit (parameter twhl). If tw

exceeds twhl the temperature control will immediately stop and the tc_mode parameter is set to

the exception state 4. The client software should be able to react to this exception in case it
receives tc_mode=4 from the camera.

Single image acquisition
In a first step the required value of the acquisition time in seconds may be sent with the it

parameter, e.g.

it=1.5

A single image can then be taken by sending the command:

gi

A typical output of the camera will then be:

gi: busy ifn=0
ifn=0
img=<binary data value of the image>
gi: read image; result = 0000; ifn = 0
gi;

Important is the gi; at the end for a successful execution of the command or gi: ERROR in case

of a failure. The other gi: status messages and the ifn parameter are for information only and

can be ignored.

The img parameter contains the image data sent in the ZIMPOL binary format. A typical

example looks like:

<SOH>u16[560,1280] it=1.50 date={2024-05-28T14:31:37} tc=-15.00 tw=18.12

seq_mode=0 seq_state=0 img_l=0 img_t=0<STX><data bytes><ETX>

The first part u16 is always the same since the camera currently sends pixel data as unsigned

16-bit integer numbers. The next part contains the dimensions of the image in the example 560
rows and 1280 columns. These numbers depend on the settings of the image size which can also
be inquired by the parameters img_h and img_w. A user change of the image size is currently not

foreseen for the Brachium instrument and therefore will be the same too (but maybe different from
the example). The next part contains some image meta data in the form of 8 parameters. These
are all standard camera parameters (see command and parameter table for details).

10

Performing measurements

For performing a measurement, it usually requires taking a series of images. The gis command

should be used (the gi command could also be used with a loop on the client side but this would

be less efficient because of a larger overhead.

The parameter isl is set to the number of images to be taken and the gis command is sent, e.g.

isl=3
gis

This example will create the following output from the camera:

gis: busy ifn=0
ifn=0
img=<binary data value of the image>
gis: read image; result = 0000; ifn = 0
gis: busy ifn=1
ifn=1
img=<binary data value of the image>
gis: read image; result = 0000; ifn = 1
gis: busy ifn=2
ifn=2
img=<binary data value of the image>
gis: read image; result = 0000; ifn = 2
gis;

It is very similar to the gi command as it is explained above.

For measurements the parameter seq_mode is very important. It sets the camera to a certain

image sequence mode. For the Brachium instrument only modes 0 and 32 are relevant. In
seq_mode=0 all images are taken with the same camera settings. It is useful for single image

acquisition or dark frame measurements. More important is seq_mode=32 which is required for all

polarimetric measurements. In this mode the camera uses two different camera modulator phase
values defined in the first two elements of the seq_phase parameter. The two values are

alternating changes between images. It has several consequences to be considered.

A complete measurement always requires an even number of images but the camera does not
take care of this and will execute odd numbers too. The client software needs to handle user
inputs in a correct way to ensure even numbers are taken.

The parameter seq_state included in the image meta data will have alternating values of 0 and

1 that indicates which value of the phase parameter has been used to take the image. This
information is very important for data processing later and therefore must not get lost when the
image is saved. The camera will take images with alternating phase values but it does not always
start with the same value. It can be either the first or the second value depending on how the
previous image series has ended (also using the gi command in sequence mode 32 will

alternating change the state).

As mentioned above the image sequence mode 0 is normally used to take single images or dark
frame measurements. This would mean to set the seq_mode parameter to the correct value before

sending the gi or gis command. But on the other hand, these two tasks could also be performed

in mode 32 without a significant side effect. It could simplify the camera control process.
Therefore, the recommendation is to set seq_mode=32 as default in the camera and the client

software is not changing it at any time.

11

Aborting image acquisitions and measurements

To abort a single image acquisition the abort command needs to be sent. This can also be used

to abort a measurement started with the gis command.

For measurements an alternative method is to change the isl value to the number that is equal

to the current frame number (or smaller but do not set it to 0 because this may cause an endless
series). This is somehow a cleaner way to abort a measurement.

Changing the isl value during a running measurement can also be used to shorten or extend the

measurement length. This is currently not foreseen for the Brachium instrument.

Shutdown procedure

For a clean camera shutdown and power-off a controlled increase of the image sensor
temperature is preferable because fast changes of the sensor temperature may decrease the
lifetime of the sensor. Such a procedure could be the following.

1. Set the sensor to an ambient temperature, e.g. tr=20

2. Monitor the tc value and in addition the Peltier power pp value.

3. If both tc and pp are in the save range send the shutdown command

4. After a certain delay power-off the camera

